Teoria spettrale, cosa è: l’estensione di alcuni…

Teoria spettrale


Teoria spettrale

In matematica, in particolare in analisi funzionale e algebra lineare, per teoria spettrale si intende l’estensione di alcuni concetti propri dell’algebra lineare, come quelli di autovettore e autovalore o spettro, ad un contesto matematico più generale, che ne consente l’utilizzo in ambiti molto diversi fra loro. In particolare, la teoria spettrale è legata allo studio delle funzioni analitiche.

Alternativa di Fredholm

In matematica, l’alternativa di Fredholm, il cui nome è dovuto a Ivar Fredholm, è uno dei teoremi di Fredholm, che si inserisce nel contesto della teoria di Fredholm. L’enuciato mostra che un numero complesso non nullo o è un autovalore di un operatore compatto oppure è nel relativo risolvente.

Diagonalizzabilità

In matematica, e più precisamente in algebra lineare, una trasformazione lineare di uno spazio vettoriale è diagonalizzabile o semplice se esiste una base dello spazio rispetto alla quale la matrice di trasformazione è diagonale. In modo equivalente, una matrice quadrata è diagonalizzabile o semplice se è simile ad una matrice diagonale.

Misura a valori di proiettore

In matematica, in particolare in analisi funzionale, una misura a valori di proiettore è una funzione definita su un certo sottoinsieme di un insieme fissato i cui valori restituiti sono proiettori autoaggiunti su uno spazio di Hilbert.

Quoziente di Rayleigh

In matematica, in particolare nell’ambito dell’algebra lineare e dell’analisi funzionale, per una data matrice hermitiana  e un vettore non nullo , il quoziente di Rayleigh è il numero reale:

Raggio spettrale

In matematica, il raggio spettrale di una matrice o di un operatore lineare limitato è l’estremo superiore della norma del modulo degli elementi del suo spettro. Spesso è denotato con .

Risoluzione all’identità

In matematica, la risoluzione all’identità è una formula che ha importanti risvolti pratici nell’algebra lineare e nell’analisi funzionale, in particolare nella risoluzione di problemi legati a spazi vettoriali dotati di una base ortonormale.

Spazio di Hilbert allargato

In analisi funzionale, uno spazio di Hilbert allargato o tripla di Gelfand è una struttura matematica astratta che collega alcuni aspetti della teoria degli spazi di Hilbert, alla teoria delle distribuzioni. Questi spazi sono stati introdotti per consentire un formalismo più proficuo nell’ambito della teoria spettrale, e trovano numerose applicazioni in meccanica quantistica. In particolare, è possibile trattare unitariamente lo spettro continuo e discreto degli operatori autoaggiunti.

Spettro (matematica)

In matematica, in particolare nell’ambito dell’analisi funzionale e della teoria spettrale, lo spettro di una trasformazione lineare tra spazi vettoriali è la generalizzazione del concetto di insieme di autovalori per le matrici.

Spettro essenziale

In matematica, lo spettro essenziale di un operatore limitato è un sottoinsieme dello spettro.

Teorema spettrale

In algebra lineare e analisi funzionale il teorema spettrale si riferisce a una serie di risultati relativi agli operatori lineari oppure alle matrici. In termini generali il teorema spettrale fornisce condizioni sotto le quali un operatore o una matrice possono essere diagonalizzati, cioè rappresentati da una matrice diagonale in una base.


Da Wikipedia, l’enciclopedia libera.

Rispondi

%d blogger hanno fatto clic su Mi Piace per questo: