Analisi matematica: cos’è, tutto sull’argomento

[ad_1]

Analisi matematica

L’analisi matematica è il campo della matematica che si occupa delle proprietà che emergono dalla scomposizione infinita di un insieme denso. Si fonda sul calcolo infinitesimale, con il quale, attraverso le nozioni di limite e continuità, studia il comportamento locale di una

Catastrofe del cielo blu

La catastrofe del cielo blu è un fenomeno che si verifica nei sistemi dinamici: consiste in una biforcazione di un ciclo limite.

Definizioni della funzione esponenziale

Nella matematica, la funzione esponenziale può essere caratterizzata in vari modi. Le seguenti definizioni sono le più comuni. Questo articolo discute il motivo per cui ogni caratterizzazione ha senso, e del perché ogni definizione implica l’altra. Come caso speciale di queste considerazioni, si vedrà che le tre definizioni più comuni della costante matematica e sono anche equivalenti tra di loro.

Disuguaglianza di Prékopa-Leindler

In matematica, la disuguaglianza di Prékopa-Leindler è una disuguaglianza integrale strettamente correlata alla disuguaglianza inversa di Young, alla disuguaglianza di Brunn-Minkowski e ad altre numerose, importanti e classiche disuguaglianze in analisi. Il risultato porta il nome dei matematici ungheresi András Prékopa e László Leindler.

Insieme di Caccioppoli

In matematica, un insieme di Caccioppoli è un insieme il cui contorno è misurabile e ha una misura finita. Un sinonimo è un insieme di perimetro finito (localmente). In sostanza, un insieme è un insieme di Caccioppoli se la sua funzione caratteristica è una funzione a variazione limitata.

Integrale della funzione inversa

In matematica, l‘integrale di una funzione inversa può essere espresso nei termini della stessa inversa e di una primitiva della funzione non inversa, se questa la possiede. La formula è stata pubblicata nel 1905 da Charles-Ange Laisant.

Metodo di Laplace

Nell’analisi matematica, il metodo di Laplace, il cui nome deriva da Pierre-Simon Laplace, è una tecnica usata per approssimare integrali nella forma

Nucleo di Dirichlet

In analisi matematica, il nucleo di Dirichlet è la famiglia di polinomi trigonometrici definita da

Operatore non locale

Un operatore non locale è una mappa che associa funzioni in uno spazio topologico a funzioni, tale che il valore della funzione immagine in ogni punto non può essere determinato in base ai valori della funzione input in un intorno di alcun punto. Un esempio di operatore non locale è la trasformata di Fourier.

Punto di diramazione

In analisi complessa, un punto di diramazione di una funzione polidroma è un punto del dominio in cui la funzione è discontinua se ristretta a una curva che gira attorno al punto in un intorno arbitrariamente piccolo del punto. Le funzioni polidrome sono studiate rigorosamente con le superfici di Riemann, e la definizione formale di punto di diramazione usa questo concetto.

Singolarità

Il concetto di singolarità caratterizza una grande varietà di fenomeni nei campi più diversi: scienza, tecnologia, matematica, sociologia, psicologia, ecc. I fenomeni considerati “singolari” hanno in comune il fatto che piccole variazioni di una grandezza che caratterizza il fenomeno possono causare variazioni illimitatamente grandi o anche vere e proprie discontinuità in altre grandezze caratteristiche. Nella descrizione matematica di tali fenomeni compaiono caratteristiche simili: in particolare avvicinandosi al punto singolare il comportamento del sistema non può più essere descritto accuratamente con equazioni lineari e spesso nelle soluzioni delle equazioni linearizzate compare a denominatore un termine che si avvicina sempre più a zero, facendo perciò crescere illimitatamente il valore di una o più grandezze in gioco.

Studio di funzione

In analisi matematica la locuzione studio di funzione indica l’applicazione pratica dei teoremi e delle tecniche del calcolo infinitesimale nello specifico caso di una funzione di cui è nota l’espressione analitica. Lo studio di funzione è utile per ricavare esplicitamente le informazioni che descrivono il comportamento di una funzione nel suo dominio. Spesso, le informazioni ottenute mediante uno studio di funzione sono sufficienti per poter tracciare, anche a mano, un grafico qualitativo della funzione studiata e che in genere, per funzioni a valori reali di una variabile reale, viene rappresentato su un piano cartesiano, anche se in taluni casi potrebbe essere più semplice ricorrere un sistema di coordinate differente. In genere, con “studio di funzione” ci si riferisce implicitamente al solo e specifico caso delle funzioni reali di una sola variabile reale, ma con le opportune modifiche è comunque possibile adattare le considerazioni seguenti anche al caso delle funzioni di più variabili reali, nonché anche per le funzioni di una o più variabili complesse.

Supporto (matematica)

In matematica, il supporto o sostegno di una funzione è il sottoinsieme dei punti del dominio dove la funzione non si annulla. Se il dominio è uno spazio topologico e la funzione è continua, allora è conveniente definire il supporto come la chiusura dell’insieme dei punti del dominio dove la funzione non si annulla.

Teorema del minimax

Il teorema del minimax è dovuto a von Neumann. Il teorema del minimax fornisce condizioni sufficienti affinché la disuguaglianza max-min sia un’uguaglianza. Il teorema costituisce non solo il punto di inizio della teoria dei giochi, ma altresì un teorema della dualità per i problemi di programmazione lineare laddove la regione ammissibile è convessa e compatta.

Teorema di inversione di Lagrange

Nell’analisi matematica, il teorema di inversione di Lagrange, anche conosciuto come la formula di Lagrange–Bürmann, fornisce l’espansione in serie di Taylor dell’inversa di una funzione analitica.

[ad_2]

Tratto da Wikipedia:

https://it.wikipedia.org/wiki/Categoria:Analisi_matematica

Rispondi

%d blogger hanno fatto clic su Mi Piace per questo: